M.Sc. DEGREE EXAMINATION - PHYSICS

SECOND SEMESTER - APRIL 2013
PH 2812 - MATHEMATICAL PHYSICS

Date : 02/05/2013 \square
Dept. No. \square Max. : 100 Marks
Time : 9:00-12:00

PART A

Answer ALL questions

1) Check whether $f(z)=x$-iy is analytic or not by Cauchy-Riemann equations.
2) Find the Laurent series of $(\sin z) / z^{5}$ about $z=0$, upto five terms
3) Define the Dirac delta function. What is its Laplace transform?
4) Evaluate the Fourier cosine transform of the first derivative of $f(x)$.
5) What are the possible two initial conditions in the vibration of a rectangular membrane? Explain the symbols used.
6) Solve $\frac{\partial^{2} u(x, y)}{\partial x^{2}}-u(x, y)=0$.
7) State the orthonormality property of the Legendre polynomials.
8) Evaluate the $2^{\text {nd }}$ order Hermite polynomial by Rodrigue's formula.
9) List the four properties for a set of elements to form a group.
10) Distinguish Abelian group from cyclic group.

PART B

Answer any FOUR questions
$4 \times 7.5=30$
11) Show that the function $v(x, y)=-\sin x \sinh y$ is harmonic. Construct the corresponding analytic function $\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{x}, \mathrm{y})+\mathrm{iv}(\mathrm{x}, \mathrm{y})$.
12) Solve the initial value problem $\frac{d^{2} y}{d t^{2}}+25 y=10 \cos 5 t, y(0)=2, \frac{d y(0)}{d t}=0$ by the Laplace transforms .
13) Using the method of separation of variables, solve the partial differential equation $\partial u / \partial x+\partial u / \partial y=$ $(x+y) u$.
14) Assuming the recurrence formulae (i) $d / d x\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x)$ and (ii) $d / d x\left[x^{-n} J_{n}(x)\right]=-x^{-n} J_{n+1}(x)$, establish the $J_{3 / 2}(x)=(1 / x) J_{1 / 2}(x)-J_{-1 / 2}(x)$, where $J_{n}(x)$ is the Bessel function of the first kind.
15) Work out the multiplication table of the symmetry group of the proper covering operations of an equilateral triangle. Write down all the subgroups and classes .

PART C

Answer any FOUR questions
$4 \times 12.5=50$
16) Using the contour integration, evaluate the following real integral. $\int_{0}^{2 \pi} \frac{1+2 \cos \theta}{5+4 \cos \theta} d \theta$.
17) (a) Find the Fourier transform of (i) $f(x)=\exp \left(-x^{2}\right)$. (b) Represent $f(t)=\sin 2 t, 2 \pi<t<4 \pi$ and $f(t)=$ 0 otherwise, in terms of unit step function and find its Laplace transform.
18) Solve the one dimensional heat equation $\partial u / \partial t=c^{2} \partial^{2} u / \partial x^{2}$ where $u(x, t)$ is the temperature in a body of homogeneous material with the boundary conditions $u(0, t)=0$ and $u(L, t)=0$ for all t and the initial condition(initial temperature) as $u(x, 0)=f(x)$. Solve it by the method of separation of variables and use of Fourier series.
19) Solve the Hermite differential equation $d^{2} y / d x^{2}-2 x d y / d x+2 n y=0$ by the power series method.
20) (a) Obtain the transformation matrices of the symmetry elements (i) for the axis of symmetry and (ii) for the improper axis of symmetry .
(b)Enumerate and explain the symmetry elements of $\mathrm{H}_{2} \mathrm{O}$ and NH_{3} molecules.

